domingo, 10 de febrero de 2008

EQUIPOS PARA LA TRANSMISIÓN DE DATOS

Una red de área local se utiliza para conectar los equipos de una organización entre sí. Sin embargo, una sola organización generalmente incluye diversas redes de área local, con lo cual a veces es necesario conectar estas redes entre sí. En tal caso, se necesita equipo especializado.


Cuando se trata de dos redes del mismo tipo, lo único que se necesita hacer es enviar las tramas de datos de una red a otra. De lo contrario, es decir, cuando las redes utilizan diferentes protocolos, será necesario convertir el protocolo antes de enviar las tramas. Por esta razón, el equipo que debe instalarse varía según la configuración de que se dispone.

Equipos de Interconexión

El hardware principal que debe instalarse en redes de área local es:

Repetidores, utilizados para regenerar una señal;

En una línea de transmisión, la señal sufre distorsiones y se vuelve más débil a medida que la distancia entre los dos elementos activos se vuelve más grande. Dos nodos en una red de área local, generalmente, no se encuentran a más de unos cientos de metros de distancia. Es por ello que se necesita equipo adicional para ubicar esos nodos a una distancia mayor.

Un repetidor es un dispositivo sencillo utilizado para regenerar una señal entre dos nodos de una red. De esta manera, se extiende el alcance de la red. El repetidor funciona solamente en el nivel físico (capa 1 del modelo OSI), es decir que sólo actúa sobre la información binaria que viaja en la línea de transmisión y que no puede interpretar los paquetes de información.

Por otra parte, un repetidor puede utilizarse como una interfaz entre dos medios físicos de tipos diferentes, es decir que puede, por ejemplo, conectar un segmento de par trenzado a una línea de fibra óptica.

Concentradores (hubs), utilizados para conectar múltiples hosts;
Un concentrador (hub) es un elemento de hardware que permite concentrar el tráfico de red que proviene de múltiples hosts y regenerar la señal. El concentrador es una entidad que cuenta con determinada cantidad de puertos (posee tantos puertos como equipos a conectar entre sí, generalmente 4, 8, 16 ó 32). Su único objetivo es recuperar los datos binarios que ingresan a un puerto y enviarlos a los demás puertos. Al igual que un repetidor, el concentrador funciona en el nivel 1 del modelo OSI. Es por ello que a veces se lo denomina repetidor multipuertos. (Figura 1.)


Figura 1: Concentrador


El concentrador (hub) conecta diversos equipos entre sí, a veces dispuestos en forma de estrella, de donde deriva el nombre de HUB (que significa cubo de rueda en inglés; la traducción española exacta es repartidor) para ilustrar el hecho de que se trata del punto por donde se cruza la comunicación entre los diferentes equipos.

Existen diferentes categorías de concentradores (hubs):
Concentradores "activos": Están conectados a una fuente de alimentación eléctrica y permiten regenerar la señal que se envía a los diferentes puertos.

Puertos "pasivos": Simplemente envían la señal a todos los hosts conectados, sin amplificarla.
Es posible conectar varios concentradores (hubs) entre sí para centralizar un gran número de equipos. Esto se denomina conexión en cadena margarita(daisy chains en inglés). Para ello, sólo es necesario conectar los concentradores mediante un cable cruzado, es decir un cable que conecta los puertos de entrada/salida de un extremo a aquéllos del otro extremo.

Los concentradores generalmente tienen un puerto especial llamado "enlace ascendente" para conectar dos concentradores mediante un cable de conexión. Algunos concentradores también pueden cruzar o descruzar automáticamente sus puertos, en función de que se encuentren conectados a un host o a un concentrador. (Figura 2).


Figura 2: Conexión en cadena.

Si desea conectar varios equipos a su conexión de Internet, un concentrador no será suficiente. Necesitará un router o un conmutador, o dejar el equipo conectado directamente como una pasarela (permanecerá encendido mientras los demás equipos de la red deseen acceder a Internet).

Puentes (bridges), utilizados para conectar redes de área local del mismo tipo;
Un puente es un dispositivo de hardware utilizado para conectar dos redes que funcionan con el mismo protocolo. A diferencia de un repetidor, que funciona en el nivel físico, el puente funciona en el nivel lógico (en la capa 2 del modelo OSI).


Esto significa que puede filtrar tramas para permitir sólo el paso de aquellas cuyas direcciones de destino se correspondan con un equipo ubicado del otro lado del puente.

El puente, de esta manera, se utiliza para segmentar una red, ya que retiene las tramas destinadas a la red de área local y transmite aquellas destinadas para otras redes. Esto reduce el tráfico (y especialmente las colisiones) en cada una de las redes y aumenta el nivel de privacidad, ya que la información destinada a una red no puede escucharse en el otro extremo.

Sin embargo, el filtrado que lleva a cabo el puente puede provocar una leve demora al ir de una red a otra, razón por la cual los puentes deben ubicarse con buen criterio dentro de una red (Figura 3).

Figura 3: Puente.


La función normal de un puente es enviar paquetes entre dos redes del mismo tipo.

Conmutadores (switches), utilizados para conectar varios elementos mientras segmentan la red;
Un conmutador (switch) es un puente con múltiples puertos, es decir que es un elemento activo que trabaja en el nivel 2 del modelo OSI.
El conmutador analiza las tramas que ingresan por sus puertos de entrada y filtra los datos para concentrarse solamente en los puertos correctos (esto se denomina conmutación o redes conmutadas). Por consiguiente, el conmutador puede funcionar como puerto cuando filtra los datos y como concentrador (hub) cuando administra las conexiones.


Pasarelas (gateways), utilizadas para conectar redes de área local de diferentes tipos;
Una pasarela de aplicación (gateway) es un sistema de hardware/software para conectar dos redes entre sí y para que funcionen como una interfaz entre diferentes
protocolos de red.

Cuando un usuario remoto contacta la pasarela, ésta examina su solicitud. Si dicha solicitud coincide con las reglas que el administrador de red ha configurado, la pasarela crea una conexión entre las dos redes. Por lo tanto, la información no se transmite directamente, sino que se traduce para garantizar una continuidad entre los dos protocolos.


El sistema ofrece (además de una interfaz entre dos tipos de redes diferentes), seguridad adicional, dado que toda la información se inspecciona minuciosamente (lo cual puede generar demora) y en ocasiones se guarda en un registro de eventos.

La principal desventaja de este sistema es que debe haber una aplicación de este tipo disponible para cada servicio (FTP, HTTP, Telnet, etc.).

Routers, utilizados para conectar varias redes de área local y permitir que los datos viajen de manera óptima entre las redes;
Un router es un dispositivo de interconexión de redes informáticas que permite asegurar el enrutamiento de paquetes entre redes o determinar la ruta que debe tomar el paquete de datos.


Cuando un usuario accede a una URL, el cliente web (navegador) consulta al servidor de nombre de dominio, el cual le indica la dirección IP del equipo deseado.

La estación de trabajo envía la solicitud al router más cercano, es decir, a la pasarela predeterminada de la red en la que se encuentra. Este router determinará así el siguiente equipo al que se le enviarán los datos para poder escoger la mejor ruta posible. Para hacerlo, el router cuenta con tablas de enrutamiento actualizadas, que son verdaderos mapas de los itinerarios que pueden seguirse para llegar a la dirección de destino. Existen numerosos protocolos dedicados a esta tarea. Ver Figura 4.


Figura 4: Interconexión Router.



Además de su función de enrutar, los routers también se utilizan para manipular los datos que circulan en forma de datagramas, para que puedan pasar de un tipo de red a otra. Como no todas las redes pueden manejar el mismo tamaño de paquetes de datos, los routers deben fragmentar los paquetes de datos para que puedan viajar libremente.

Puente/router, que combina las características de un router y de un puente.
Un puente/router es un elemento híbrido que reúne las características de un router y de un puente. Por lo tanto, este tipo de hardware se utiliza para transferir protocolos no enrutables de una red a otra y para enrutar otros. Más precisamente, el puente/router actúa, en primer lugar, como un puente o en su defecto, enruta los paquetes.

Un puente/router, en algunas arquitecturas, puede ser más económico y compacto que un router y un puente.

Proxy,
Un servidor proxy es en principio un equipo que actúa como intermediario entre los equipos de una
red de área local (a veces mediante protocolos, con excepción del protocolo TCP/IP) e Internet.
Generalmente el servidor proxy se utiliza para la
Web. Se trata entonces de un proxy HTTP. Sin embargo, puede haber servidores proxy para cada protocolo de aplicación (FTP, etc.). Figura 5.


Figura 5: Interconexión del Proxy.

MULTIPLEXORES

Por definición, el multiplexor es un circuito combinacional diseñado para seleccionar la información binaria de una línea entrada de entre varias líneas de entrada y dirigida a una sola línea de salida. Las entradas y salidas que poseen estos circuitos son las siguientes:
- N entradas de información o canales (I).
- N entradas de selección o control (S).
- Una entrada de autorización/Habilitación/desinhibición o enable (E).
- Una salida de información (Y).

Por lo tanto, un multiplexor (o multiplexor de 2n a 1) es un módulo combinacional con 2n entradas y 1 salida, además de una señal de activación y n señales de control.

El multiplexor conecta una de las 2n entradas a la salida. Esta entrada se selecciona con la palabra de control S (n bits). Figura 6, 7: Multiplexor.

Figura 6: Diagrama de Bloques de un Multiplexor.


Figura 7: Uso del Multiplexor.

Se denomina canal de comunicación al enlace que se establece entre un equipo emisor y un receptor, permitiendo la transmisión de datos en un único sentido.

Si la capacidad del medio excede la requerida para una sola señal: Se utilizan dos dispositivos:


Los multiplexores y los concentradores. La diferencia entre ambos consiste en que los segundos gestionan la transmisión de varios canales y los multiplexores sólo son capaces de unir y separar las diferentes señales .

El medio lleva varias señales simultáneamente, a lo que se le denomina multiplexación. Multiplexación en división de frecuencias (FDM ). Se transmiten diferentes señales mediante diferentes frecuencias portadoras, utilizando por ejemplo FSK full-duplex (es decir, en ambas direcciones). En división de tiempos (TDM). En la segunda, se pueden llevar múltiples señales digitales en un solo canal de transmisión intercalando porciones de cada señal en el tiempo. Este intercalado puede ser a nivel de bit o en bloques de bytes.

Campo de aplicación (Ejemplo)

El multiplexor MX-69 ha sido diseñado para aplicaciones punto a unto entre equipos con interfaz RS-232. Por dos pares de fibra óptica se pueden transmitir 8 señales en cada dirección, lo que constituye una gran ventaja, por ejemplo cuando se dispone de poco cable de fibra óptica. Como la fibra óptica es totalmente inmune a las interferencias externas, es la solución perfecta para las aplicaciones en las que éstas alcanzan niveles elevados.


El MX-69 admite velocidades de transmisión de hasta 38,4 kbit/s en cada canal y distancias de transmisión de hasta 3,5 km con cable multimodo.
El multiplexor MX-69 se instala en el bastidor Westermo (RV-01), lo cual supone un gran ahorro de espacio cuando es preciso instalar muchos módems en el mismo emplazamiento, por ejemplo, un centro de procesamiento de datos. El MX-69 es compatible con el MM-61.

Figura 8: Multiplexor MX-69.

Figura 9: Utilidad del Multiplexor MX-69.

Figura 10: Conexión del Multiplexor MX-69.

PROTOCOLOS Y CONVERSORES DE PROTOCOLOS

Podemos definir un protocolo como el conjunto de normas que regulan la comunicación (establecimiento, mantenimiento y cancelación) entre los distintos componentes de una red informática. Existen dos tipos de protocolos: protocolos de bajo nivel y protocolos de red.

Un protocolo es un método estándar que permite la comunicación entre procesos (que potencialmente se ejecutan en diferentes equipos), es decir, es un conjunto de reglas y procedimientos que deben respetarse para el envío y la recepción de datos a través de una red. Existen diversos protocolos de acuerdo a cómo se espera que sea la comunicación. Algunos protocolos, por ejemplo, se especializarán en el intercambio de archivos (FTP); otros pueden utilizarse simplemente para administrar el estado de la transmisión y los errores (como es el caso de ICMP),otros.

En Internet, los protocolos utilizados pertenecen a una sucesión de protocolos o a un conjunto de protocolos relacionados entre sí. Este conjunto de protocolos se denomina TCP/IP. Entre otros, contiene los siguientes protocolos:

Http
Desde 1990, el protocolo HTTP (Protocolo de transferencia de hipertexto) es el protocolo más utilizado en Internet. La versión 0.9 sólo tenía la finalidad de transferir los datos a través de Internet (en particular páginas Web escritas en HTML). La versión 1.0 del protocolo (la más utilizada) permite la transferencia de mensajes con encabezados que describen el contenido de los mensajes mediante la codificación MIME.

El propósito del protocolo HTTP es permitir la transferencia de archivos (principalmente, en formato HTML). entre un navegador (el cliente) y un servidor web (denominado, entre otros, httpd en equipos UNIX) localizado mediante una cadena de caracteres denominada dirección URL.

Ftp
El protocolo FTP (Protocolo de transferencia de archivos) es, como su nombre lo indica, un protocolo para transferir archivos.
La implementación del FTP se remonta a 1971 cuando se desarrolló un sistema de transferencia de archivos (descrito en RFC141) entre equipos del Instituto Tecnológico de Massachusetts (MIT, Massachusetts Institute of Technology). Desde entonces, diversos documentos de RFC (petición de comentarios) han mejorado el protocolo básico, pero las innovaciones más importantes se llevaron a cabo en julio de 1973.

Actualmente, el protocolo FTP está definido por RFC 959 (Protocolo de transferencia de archivos (FTP) - Especificaciones).

Arp
El protocolo ARP tiene un papel clave entre los protocolos de capa de Internet relacionados con el protocolo TCP/IP, ya que permite que se conozca la dirección física de una tarjeta de interfaz de red correspondiente a una dirección IP. Por eso se llama Protocolo de Resolución de Dirección (en inglés ARP significa Address Resolution Protocol).

Cada equipo conectado a la red tiene un número de identificación de 48 bits. Éste es un número único establecido en la fábrica en el momento de fabricación de la tarjeta. Sin embargo, la comunicación en Internet no utiliza directamente este número (ya que las direcciones de los equipos deberían cambiarse cada vez que se cambia la tarjeta de interfaz de red), sino que utiliza una dirección lógica asignada por un organismo: la dirección IP.

Para que las direcciones físicas se puedan conectar con las direcciones lógicas, el protocolo ARP interroga a los equipos de la red para averiguar sus direcciones físicas y luego crea una tabla de búsqueda entre las direcciones lógicas y físicas en una memoria caché.
Cuando un equipo debe comunicarse con otro, consulta la tabla de búsqueda. Si la dirección requerida no se encuentra en la tabla, el protocolo ARP envía una solicitud a la red. Todos los equipos en la red comparan esta dirección lógica con la suya. Si alguno de ellos se identifica con esta dirección, el equipo responderá al ARP, que almacenará el par de direcciones en la tabla de búsqueda, y, a continuación, podrá establecerse la comunicación.

Icmp
ICMP (Protocolo de mensajes de control de Internet) es un protocolo que permite administrar información relacionada con errores de los equipos en red. Si se tienen en cuenta los escasos controles que lleva a cabo el protocolo IP, ICMP no permite corregir los errores sino que los notifica a los protocolos de capas cercanas. Por lo tanto, el protocolo ICMP es usado por todos los routers para indicar un error (llamado un problema de entrega).

Ip
Los equipos comunican a través de Internet mediante el protocolo IP (Protocolo de Internet). Este protocolo utiliza direcciones numéricas denominadas direcciones IP compuestas por cuatro números enteros (4 bytes) entre 0 y 255, y escritos en el formato xxx.xxx.xxx.xxx. Por ejemplo, 194.153.205.26 es una dirección IP en formato técnico.

Los equipos de una red utilizan estas direcciones para comunicarse, de manera que cada equipo de la red tiene una dirección IP exclusiva.
El organismo a cargo de asignar direcciones públicas de IP, es decir, direcciones IP para los equipos conectados directamente a la red pública de Internet, es el ICANN (Internet Corporation for Assigned Names and Numbers) que remplaza el IANA desde 1998 (Internet Assigned Numbers Agency).

Tcp
TCP (Protocolo de Control de Transmisión) es uno de los principales protocolos de la capa de transporte del modelo TCP/IP. En el nivel de aplicación, posibilita la administración de datos que vienen del nivel más bajo del modelo, o van hacia él, (es decir, el protocolo IP). Cuando se proporcionan los datos al protocolo IP, los agrupa en datagramas IP, fijando el campo del protocolo en 6 (para que sepa con anticipación que el protocolo es TCP). TCP es un protocolo orientado a conexión, es decir, que permite que dos máquinas que están comunicadas controlen el estado de la transmisión. Las principales características del protocolo TCP son las siguientes:
- TCP permite colocar los datagramas nuevamente en orden cuando vienen del protocolo IP.
- TCP permite que el monitoreo del flujo de los datos y así evita la saturación de la red.
- TCP permite que los datos se formen en segmentos de longitud variada para "entregarlos" al protocolo IP.
- TCP permite multiplexar los datos, es decir, que la información que viene de diferentes fuentes (por ejemplo, aplicaciones) en la misma línea pueda circular simultáneamente.
- Por último, TCP permite comenzar y finalizar la comunicación amablemente.

Udp
El protocolo UDP (Protocolo de datagrama de usuario) es un protocolo no orientado a conexión de la capa de transporte del modelo TCP/IP. Este protocolo es muy simple ya que no proporciona detección de errores (no es un protocolo orientado a conexión).

Smtp
El protocolo SMTP (Protocolo simple de transferencia de correo) es el protocolo estándar que permite la transferencia de correo de un servidor a otro mediante una conexión punto a punto.

Éste es un protocolo que funciona en línea, encapsulado en una trama TCP/IP. El correo se envía directamente al servidor de correo del destinatario. El protocolo SMTP funciona con comandos de textos enviados al servidor SMTP (al puerto 25 de manera predeterminada). A cada comando enviado por el cliente (validado por la cadena de caracteres ASCII CR/LF, que equivale a presionar la tecla Enter) le sigue una respuesta del servidor SMTP compuesta por un número y un mensaje descriptivo.

Telnet
El protocolo Telnet es un protocolo de Internet estándar que permite conectar terminales y aplicaciones en Internet. El protocolo proporciona reglas básicas que permiten vincular a un cliente (sistema compuesto de una pantalla y un teclado) con un intérprete de comandos (del lado del servidor).

El protocolo Telnet se aplica en una conexión TCP para enviar datos en formato ASCII codificados en 8 bits, entre los cuales se encuentran secuencias de verificación Telnet. Por lo tanto, brinda un sistema de comunicación orientado bidireccional (semidúplex) codificado en 8 bits y fácil de implementar.

Conversores de Protocolo

• Trabajan a nivel de transporte o superior.
• Se suele hablar de conmutación de transporte frente a
conmutación de nivel 3, por ejemplo.
• Su trabajo es mucho más complejo que el de un gateway: puede
convertir entre dos protocolos sin perder mucho significado.
• Como ejemplos, la conversión de TP4 (OSI) a TCP (Internet), la
conversión MOTIS (OSI) a RFC 822 (Internet), etc...
• El trabajo de un conversor es en general a nivel de aplicación
entre dos estándares distintos, y no se hacen traducciones
genéricas entre entidades de protocolos genéricas.

APLICACIONES TELEINFORMÁTICAS DE LAS REDES TELEFÓNICAS

El teléfono es uno de los instrumentos de tecnología con mayor permanencia, particularmente en los negocios. Todos los días estas entidades realizan literalmente miles de llamadas cuyo costo es realmente bajo en comparación con el volumen de dinero que se maneja a través de ellas.
Para la mayoría de las compañías, una porción de este costo es evitable, tomando en cuenta que las redes públicas de telefonía poseen un complejo mundo de tarifas y subsidios, que a menudo resultan en situaciones en donde las llamadas salientes forman solo una parte de las llamadas entrantes. Esto hace que las empresas hayan tenido que confiar a la larga con redes privadas.
Fuente: Rodríguez M., Rafael A. - UCV
DISEÑO DE REDES
En el diseño de una red integrada de voz y datos, debe existir una diferencia marcada entre el limite que existe en el diseño de redes de voz y datos, ya que ambas tratan de establecer sesiones terminales entre usuarios, debido a que el concepto de señalización, direccionamiento y enrutamiento de las mismas son similares.
Los cambios en el diseño de redes integradas de voz y datos están en comprender como estos elementos son conciliados en una misma red. El retardo y las variaciones de retardo, implican una reducción en su impacto, es decir estudiar redes de voz sensitivas al retardo y redes con trafico de datos insensibles al mismo.
Un punto de peso para el diseño de redes, esta en que no todo el tráfico de voz es necesariamente sensitivo al retardo. Por ejemplo, el fax y el correo de voz, no tienen restricciones en tiempo real, como las conversaciones de voz. Por lo que añadir servicios de correo de voz y fax puede ser una justificación, para soportar "voz" sobre redes de datos.
Para esto podemos seguir ciertos pasos para el diseño:
Auditoria de la red
Objetivos de la red
Revisión de tecnología y servicios
Guías Técnicas
Planificación de la capacidad
Análisis financiero
Fuente: Rodríguez M., Rafael A. - UCV

INTERCONEXIÓN

La red telefónica básica se creó para permitir las comunicaciones de voz a distancia. En un primer momento (1.876 - 1.890), los enlaces entre los usuarios eran punto a punto, por medio de un par de cobre (en un principio un único hilo, de hierro al principio y después de cobre, con el retorno por tierra) entre cada pareja de usuarios. Esto dio lugar a una topología de red telefónica completamente mallada, tal y como se muestra en la Figura 12.

Figura 12: Conexión mediante una red completamente mallada

Si se hacen las cuentas, esta solución se ve que es claramente inviable. Si se quiere dar servicio a una población de N usuarios, con este modelo completamente mallado, harían falta Nx(N - 1)/2 enlaces. Por esa razón se evolucionó hacia el modelo en el que cada usuario, por medio de un par de cobre se conecta a un punto de interconexión (central local) que le permite la comunicación con el resto.

Figura 13: Conexión mediante una red en estrella

De este modo la red telefónica se puede dividir en dos partes. La estructura de la red telefónica mostrada en la Figura 13: Conexión mediante una red en estrella es la que básicamente hoy se sigue manteniendo. Lo único es que la interconexión entre las centrales se ha estructurado jerárquicamente en varios niveles dando lugar a una red de interconexión. De este modo, la red telefónica básica se puede dividir en dos partes: la red de acceso y la red de interconexión (Figura 14).

Figura 14: Estructura de la red telefónica


El bucle de abonado es el par de cobre que conecta el terminal telefónico del usuario con la central local de la que depende. El bucle de abonado proporciona el medio físico por medio del cuál el usuario accede a la red telefónica y por tanto recibe el servicio telefónico. La red de interconexión es la que hace posible la comunicación entre usuarios ubicados en diferentes áreas de acceso (CSAs).

Redes Telefónicas
La red telefónica es una red de conmutación de circuitos, dada su extensión y complejidad, se puede clasificar en lo que constituye las propias centrales de conmutación, la parte de interconexión que las une y la parte de enlace con los usuarios o abonados. Atendiendo a este criterio se tiene:
· Red de enlacesEstá constituida por los circuitos que unen las centrales entre sí, utilizando medios de transmisión diversos, como cables de pares o fibras ópticas, que son los que proporcionan la vía de comunicación con otro que cuelga de una central distinta a la suya. Si las centrales que se unen son urbanas, la red de interconexión se denomina red de enlaces urbanos, y si no, red de enlaces interurbanos.
· Redes de abonados.Es el conjunto de elementos de conexión entre los equipos de abonado y la central local a la que pertenecen, de tal manera que cada uno de ellos tiene asignado un circuito único (bucle de abonado).

ESTRUCTURA DE LAS REDES TELEFÓNICAS

La conmutación telefónica es el proceso mediante el cual se establece y mantiene un circuito de conmutación capaz de permitir el intercambio de información entre dos usuarios cualesquiera. La imposibilidad de mantener conectados a todos los usuarios entre si, con dedicación exclusiva de ciertos medios para su uso, es lo que hace necesario el empleo de un sistema que permita establecer el enlace para la comunicación solamente durante el tiempo que está dure. Los sistemas que consiguen una mayor eficacia son las centrales telefónicas en sus diversas modalidades.

Estructura
Atendiendo a la distribución geográfica tenemos tres tipos de redes, las llamadas “urbanas” o de corta distancia, las “interurbanas” o de larga distancia y las “internacionales”.

Redes urbanas: Dentro de estas se engloban los circuitos de abonados y los enlaces entre centrales locales, para transmisión en banda base o en baja frecuencia. Normalmente están constituidos por pares de conductores, que al agruparse, forman el llamado “cable de pares”, que puede contener hasta varios cientos de ellos, configurados en simétricos y en cuadretes, para una menor interferencia de unos sobre otros.

Redes interurbanas: Esta es la encargada de proporcionar los enlaces entre centrales localizadas en diferentes ciudades; ello hace que las distancias sean mayores y se deban utilizar cables de distintas características a los antes mencionados, con menores pérdidas y una respuesta plana que se consigue de dos formas diferentes: una cargando los cables de pares, y otra, empleando otros medios distintos de los cables de pares, tales como el cable coaxial, fibra óptica, radio enlaces, etc.; todos ellos con una mayor capacidad de transmisión y una mayor fiabilidad.

Redes internacionales: para dar curso al tráfico entre diferentes países se necesita de la interconexión entre centrales internacionales, encargadas de encaminar el mismo. Esta se realiza mediante enlaces de alta capacidad (varios miles de circuitos full-duplex) y fiabilidad, constituidos fundamentalmente por enlaces terrestres, submarinos o vía satélite, repartiéndose al menos entre dos de ellos por razones de seguridad. Los canales empleados son de tipo analógico (FDM/Multiplexaje por División de Frecuencia) o digitales (TDM/Multiplexaje por División de Tiempo)

Las centrales de conmutación son los elementos funcionales encargados de proporcionar la selectividad necesaria, de forma automática, para poder establecer el circuito de enlace entre dos usuarios que desean comunicarse. En ellas reside además todo el control y la señalización propios de la red.

Central Local: A éstas se conectan todas las líneas de abonado, de tal forma que mediante un par físico se une un teléfono con la central. También, se llama central urbana.

Red telefónica conmutada o red telefónica básica
Depende de la Compañía Telefónica y es la red utilizada en las comunicaciones orales por teléfono.
Puede conectarse un usuario, por medio del correspondiente módem, a cualquier otro abonado, identificándose ambos por su número de teléfono.
Ventajas: amplia cobertura, nacional e internacional, y su precio en comparación con las redes de uso exclusivo, ya que se factura según la duración de la comunicación al igual que las conferencias telefónicas.
Inconvenientes: es su baja calidad, al ser una red para voz con un ancho de banda inferior a lo deseable. Se utiliza principalmente para comunicaciones esporádicas y de corta duración. Las velocidades de transmisión oscilan de 1200 a 2400 bps.

Red Iberpac
Promovida por empresas (bancarias), depende de Telefónica y su objetivo es: una red nacional especializada en transmisión de datos.
Grandes nodos de concentración situados en algunas capitales.
Alta calidad y utiliza la técnica de conmutación de paquetes.
Está conectada a las redes públicas citadas en los apartados anteriores y asimismo a las grandes redes internacionales de transmisión de datos: Transpac en Francia, Tymney y Telenet en Estados Unidos, Datapac e Infoswitch en Canadá.